Q & A on Current

BENGALI VERSION

- ১) কোন্ অবস্থায় কোশের তড়িৎচালক বল এর প্রান্তীয় বিভব পার্থক্য অপেক্ষা ক্ষুদ্রতর হতে পারে ?
- উত্তরঃ যখন বাহ্যিক উৎস থেকে প্রবাহমাত্রা পাঠিয়ে তড়িৎকোশকে আহিত করা হয় তখন এর প্রান্তীয় বিভব পার্থক্য তড়িৎচালক বল অপেক্ষা বেশি হয়। কারণ এক্ষেত্রে V=E+Ir
- ২) একটি কোশের তড়িৎচালক বল 1.5 ভোল্ট বলতে কী বোঝ ?
- উত্তরঃ মুক্ত বর্তনীতে কোশটির ভেতরে ঋণাত্মক মেরু থেকে ধনাত্মক মেরুতে 1 কুলম্ব ধনাত্মক তড়িদাধান নিয়ে যেতে তড়িৎ ভিন্ন অন্য সংস্থা দ্বারা কৃতকার্যের পরিমাণ 1.5 জুল ।
- ৩) বৈদ্যুতিক হিটারে নাইক্রোম তার ব্যবহার করা হয় কেন ?

উত্তরঃ বৈদ্যুতিক হিটারে নাইক্রোম তার ব্যবহার করা হয়, কারণ —

- (i) এর রোধাঙ্ক বেশি হওয়ায় তড়িৎ প্রবাহের ফলে বেশি তাপ উৎপন্ন হয় ।
- (ii) এর গলনাঙ্ক উচ্চ হওয়ায় এটি উচ্চ তাপমাত্রায় গলে যায় না।
- (iii) এটি বায়ুতে উন্মুক্ত থাকলেও বায়ুর অক্সিজেন দ্বারা জারিত হয় না।
- 8) একটি ধাতব তারের রোধ R । তারটিকে টেনে এর দৈর্ঘ্য n-শুণ করা হলো। তারটির নতুন রোধ কত হবে ? ধরে নাও, আয়তন অপরিবর্তিত থাকে।

উত্তরঃ প্রাথমিক রোধ, $R=
horac{l}{A}$ [l= তারের দৈর্ঘ্য, A= তারের প্রস্থচ্ছেদের ক্ষেত্রফল] [
ho= তারটির উপাদানের রোধাষ্ক]

টান করার পর, $R_n=
horac{l_n}{A_n}$

darphi আয়তন অপরিবর্তিত থাকে। $\qquad darphi \ lA = l_n A_n = n l A_n \qquad \qquad [\ darphi \ l_n = n l \]$

$$\therefore A_n = \frac{A}{n}$$

 \therefore অন্তিম রোধ $R_n=
horac{l_n}{A_n}=
horac{nl}{rac{A}{n}}=n^2
horac{l}{A}=n^2R$

ENGLISH VERSION

1) When is e.m.f. of a cell is less than its terminal potential difference?

Ans: When the cell is charged by passing electric current from the external source, then the e.m.f. is less than its terminal potential difference. Because in this case, V = E + Ir.

2) What do you mean by 'the e.m.f. of a cell is 1.5 volt'?

Ans: In open circuit 1.5 joule of work is to be done inside the cell by a non-electrical agency in moving 1 coulomb of positive charge from the negative pole to the positive pole of the cell.

3) Why nichrome wire is used in electric heater?

Ans: Nichrome wire is used in electric heater because –

- (i) it has high resistivity, so more heat is produced.
- (ii) it has high melting point, so does not melt at higher temperature.
- (iii) it does not get oxidized when kept open in air.
- 4) A metal wire of resistance R is stretched till its length is increased to *n*-times of the original length. What will be its new resistance? Assume volume remains constant.

Ans: Initial resistance, $R = \rho \frac{l}{A}$ [l = length, A = cross sectional area of the wire] [$\rho = \text{Resistivity of the material of the wire}$]

After stretching, $R_n = \rho \frac{l_n}{A_n}$

As the volume is constant. $lA = l_n A_n = n l A_n$ [: $l_n = n l$]

$$A_n = \frac{A}{n}$$

 $\therefore \text{ Final resistance } R_n = \rho \frac{l_n}{A_n} = \rho \frac{nl}{\frac{A}{n}} = n^2 \rho \frac{l}{A} = n^2 R$